- 1. For the section shown in Figure Q1, determine:
 - (a) The position of the Centroid, C
 - (b) 2^{nd} Moments of Area and Product Moment of Area about the x-y axes through C
 - (c) The Principal 2nd Moments of Area
 - (d) The directions of the Principal Axes

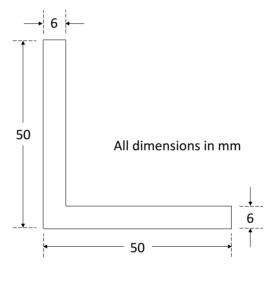


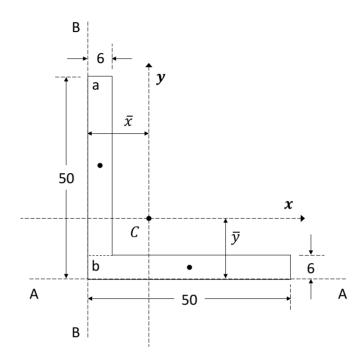
Fig Q1

[Ans: a) 14.7mm from bottom and left edges, b) $I_x = 131,257.96mm^4$, $I_y = 131,257.96mm^4$ & $I_{xy} = -77,234.04mm^4$, c) $I_p = 208,491.1mm^4$ & $I_Q = 54,023.92mm^4$, d) 45° anti-clockwise from x-y axes]

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Solution 1

(a) Position of Centroid, C



Total Area, $A = (6 \times 44)_a + (50 \times 6)_b = 564 mm^4$

Taking moments about AA:

$$\overline{y} = \frac{(6 \times 44 \times 28)_a + (50 \times 6 \times 3)_b}{564} = 14.7mm$$

Similarly, taking moments about BB:

$$\bar{x} = \frac{(44 \times 6 \times 3)_a + (6 \times 50 \times 25)_b}{564} = 14.7mm$$

(b) 2^{nd} Moments of Area and Product Moment of Area about the x-y axes through C

Therefore, using the Parallel Axis Theorem,

$$I_{x'} = (I_x + Ab^2)_a + (I_x + Ab^2)_b$$

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

$$= \left(\frac{6 \times 44^{3}}{12} + 6 \times 44 \times (28 - 14.7)^{2}\right) + \left(\frac{50 \times 6^{3}}{12} + 50 \times 6 \times (3 - 14.7)^{2}\right)$$
$$\therefore I_{x'} = 131,257.96mm^{4}$$

and,

$$I_{y'} = (I_y + Aa^2)_a + (I_y + Aa^2)_b$$
$$= \left(\frac{44 \times 6^3}{12} + 44 \times 6 \times (3 - 14.7)^2\right) + \left(\frac{6 \times 50^3}{12} + 6 \times 50 \times (25 - 14.7)^2\right)$$
$$\therefore I_{y'} = 131,257.96mm^4$$

Also,

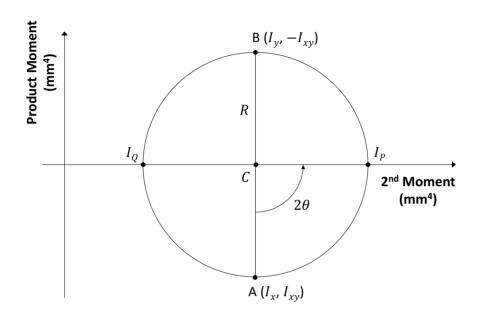
$$I_{x'y'} = (I_{xy} + Aab)_a + (I_{xy} + Aab)_b$$

= $(0 + 6 \times 44 \times (3 - 14.7) \times (28 - 14.7)) + (0 + 50 \times 6 \times (25 - 14.7) \times (3 - 14.7))$
 $\therefore I_{x'y'} = -77,234.04mm^4$

(c) Principal Second Moments of Area

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Mohr's Circle



Centre,
$$C = \frac{I_{x'} + I_{y'}}{2} = 131,257.96 mm^4$$

Radius,
$$R = \sqrt{\left(\frac{I_{x'} - I_{y'}}{2}\right)^2 + I_{x'y'}^2} = 77,234.04 mm^4$$

Therefore, the Principal 2nd Moments of Area are:

$$I_P = C + R = 131,257.96 + 77,234.04 = 208,491.1mm^4$$

and,

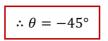
$$I_P = C - R = 131,257.96 - 77,234.04 = 54,023.92mm^4$$

(d) Directions of the Principal Axes

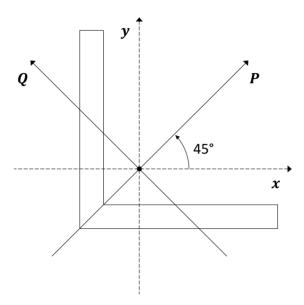
Also,

 $2\theta = -90^{\circ}$

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions



Therefore the Principal Axes are at 45° anti-clockwise from the x-y axes, as shown on the diagram below.



2. Calculate (a) the Principal 2nd Moments of Area and (b) the directions of the Principal Axes for the section shown in Figure Q2.

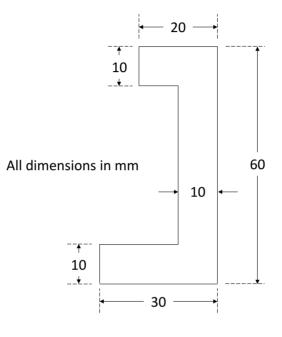


Fig Q2

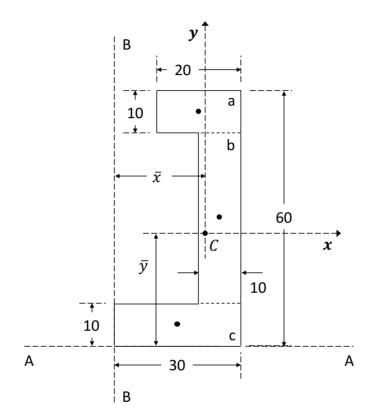
[Ans: a) $I_p = 367,810.05 \text{ mm}^4 \& I_Q = 44,967.75 \text{ mm}^4$, b) 6.97°]

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Solution 2

(a)

Position of Centroid, C



 $Total Area, A = (20 \times 10)_a + (10 \times 40)_b + (30 \times 10)_c = 900 mm^4$

Taking moments about AA:

$$\bar{y} = \frac{(20 \times 10 \times 55)_a + (10 \times 40 \times 30)_b + (30 \times 10 \times 5)_c}{900} = 27.22mm$$

Similarly, taking moments about BB:

$$\bar{x} = \frac{(10 \times 20 \times 20)_a + (40 \times 10 \times 25)_b + (10 \times 30 \times 15)_c}{900} = 20.56mm$$

2^{nd} Moments of Area and Product Moment of Area about the *x*-*y* axes through *C*

Therefore, using the Parallel Axis Theorem,

$$I_{xr} = (I_x + Ab^2)_a + (I_x + Ab^2)_b + (I_x + Ab^2)_c$$

= $\left(\frac{20 \times 10^3}{12} + 20 \times 10 \times (55 - 27.22)^2\right) + \left(\frac{10 \times 40^3}{12} + 10 \times 40 \times (30 - 27.22)^2\right)$
+ $\left(\frac{30 \times 10^3}{12} + 30 \times 10 \times (5 - 27.22)^2\right)$
= $363,055.56mm^4$

and,

$$I_{yr} = (I_y + Aa^2)_a + (I_y + Aa^2)_b + (I_y + Aa^2)_c$$

= $\left(\frac{10 \times 20^3}{12} + 10 \times 20 \times (20 - 20.56)^2\right) + \left(\frac{40 \times 10^3}{12} + 40 \times 10 \times (25 - 20.56)^2\right)$
+ $\left(\frac{10 \times 30^3}{12} + 10 \times 30 \times (15 - 20.56)^2\right)$
= 49,722.24mm⁴

Also,

$$I_{x'y'} = (I_{xy} + Aab)_a + (I_{xy} + Aab)_b + (I_{xy} + Aab)_c$$

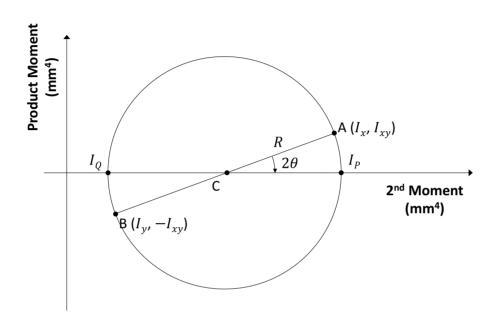
 $= (0 + 20 \times 10 \times (20 - 20.56) \times (55 - 27.22)) + (0 + 10 \times 40 \times (25 - 20.56) \times (30 - 27.22)) + (0 + 30 \times 10 \times (15 - 20.56) \times (5 - 27.22))$

 $= 38,888.88mm^4$

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Principal Second Moments of Area

Mohr's Circle



$$Centre, C = \frac{I_{x'} + I_{y'}}{2} = \frac{363,055.56 + 49,722.24}{2} = 206,388.9mm$$

$$Radius, R = \sqrt{\left(\frac{I_{x'} - I_{y'}}{2}\right)^2 + I_{x'y'}^2} = \sqrt{\left(\frac{363,055.56 - 49,722.24}{2}\right)^2 + 38,888.88^2} = 161,421.15mm$$

Therefore, the Principal 2nd Moments of Area are:

 $I_P = C + R = 206,388.9 + 161,421.15 = 367,810.05mm^4$

and,

$$I_Q = C - R = 206,388.9 - 161,421.15 = 44,967.75mm^4$$

(b)

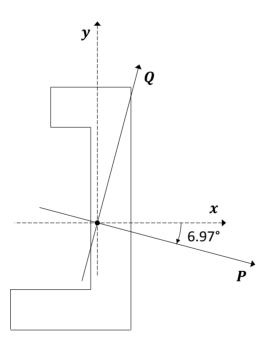
Directions of the Principal Axes

From the Mohr's Circle above:

$$sin2\theta = \frac{I_{xy}}{R} = \frac{38,888.88}{161,421.15}$$

 $\therefore \theta = 6.97^{\circ}$

Therefore the Principal Axes are at 6.97° (clockwise) from the x-y axes, as shown on the diagram below.

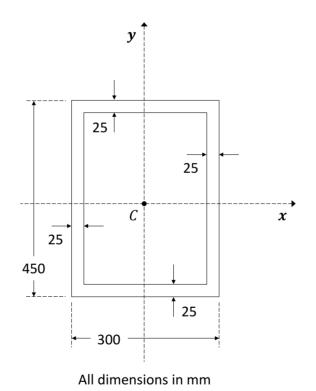


3. A box section beam, 300mm wide, 450mm deep, with a uniform wall thickness of 25mm is subjected to a uniform bending moment, *M*. The plane of bending is inclined at an angle of 30° to the longer principal axis of the section. Determine the maximum permissible bending moment if the maximum stress in the beam is not to exceed 120MPa.

[Ans: 334.54kNm]

Solution 3

Principal 2nd Moments of Area



Due to 2 planes of symmetry in the section, it can be seen that the Principal (P-Q) Axes lie on the x-y axes,

i.e.,

$$\theta = 0^{\circ}$$

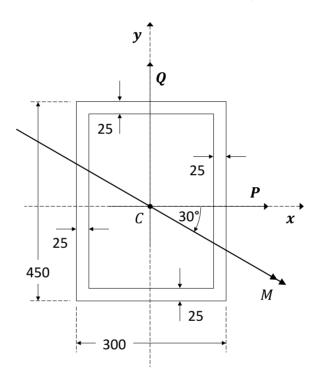
where θ is the angle between the x-y axes and the Principal (P-Q) Axes. Also,

$$I_P = I_x = \left(\frac{b_o d_o^3}{12} - \frac{b_i d_i^3}{12}\right)_x = \frac{300 \times 450^3}{12} - \frac{250 \times 400^3}{12} = 944,791,666.67mm^4$$

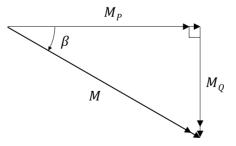
and,

$$I_Q = I_y = \left(\frac{b_o d_o^3}{12} - \frac{b_i d_i^3}{12}\right)_y = \frac{450 \times 300^3}{12} - \frac{400 \times 250^3}{12} = 491,666,666.67mm^4$$

Bending Moment is applied at 30° to the longer Principal Axis (i.e. the Q-axis) as shown below,



Resolve applied Bending Moment onto Principal Axes



Therefore,

$$M_P = M cos \beta = M cos 30$$

and,

$$M_o = -Msin\beta = -Msin30$$

(note negative sign as M_Q is in the negative y direction)

Calculation of position of Neutral Axis

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

At the Neutral Axis, σ_b = 0, therefore,

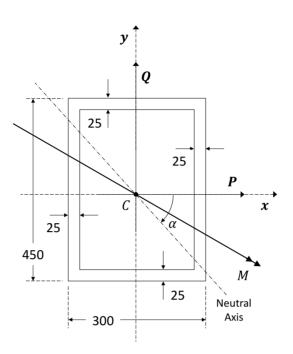
$$\frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = 0$$
$$\therefore \frac{M_P Q}{I_P} = \frac{M_Q P}{I_Q}$$
$$\therefore \frac{Q}{P} = \frac{M_Q I_P}{M_P I_Q}$$

Therefore, α , the angle between the Neutral Axis and the Principal Axes can be defined as,

$$\alpha = \tan^{-1}\left(\frac{Q}{P}\right) = \tan^{-1}\left(\frac{M_Q I_P}{M_P I_Q}\right) = \tan^{-1}\left(\frac{-Msin30 \times 944,791,666.67}{Mcos30 \times 491,666,666.67}\right) = -47.97^{\circ}$$

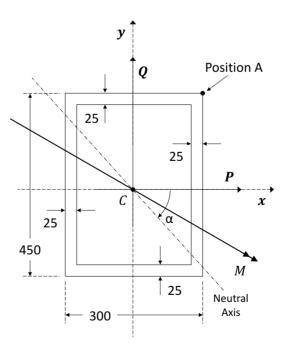
Therefore the Neutral Axis is at 47.97° (clockwise) from the Principal Axes as shown below,

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions



Maximum Tensile Stress in the section

It can be seen that the maximum (tensile) Bending Stress will be at position A, as shown below,



As above,

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

Therefore, the co-ordinates of point A on the P-Q axes are required. In this case, these are the same as the x-y co-ordinates and are:

$$P = 150mm$$

and,

$$Q = 225mm$$

These *P*-*Q* co-ordinates for position A can now be substituted into the equation for bending stress to give:

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = \frac{M \cos 30 \times 225}{944,791,666.67} - \frac{-M \sin 30 \times 150}{491,666,666.67}$$
$$\therefore \sigma_b = M(2.062 \times 10^{-7} + 1.525 \times 10^{-7}) = 3.587 \times 10^{-7} \times M$$

As the maximum stress in the beam is not to exceed 120MPa:

 $120 = 3.587 \times 10^{-7} \times M$

$$\therefore M = 33.454Nmm = 334.54kNm$$

4. A 50mm by 30mm by 5mm angle is used as a cantilever of length 500mm, with the 30mm leg horizontal and uppermost. A vertical load of 1000N is applied at the free end. Determine (a) the position of the neutral axis and (b) the maximum tensile and compressive bending stresses.

[Ans: a) 86.79°, b) 201.18MPa & -94.38MPa]

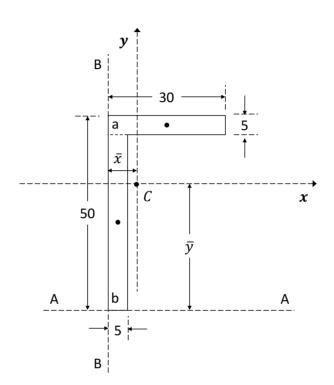
$30 \longrightarrow \frac{1}{5}$

Solution 4

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

(a)

Position of Centroid, C



 $Total Area, A = (30 \times 5)_a + (5 \times 45)_b = 375 mm^4$

Taking moments about AA:

$$\overline{y} = \frac{(30 \times 5 \times 47.5)_a + (5 \times 45 \times 22.5)_b}{375} = 32.5mm$$

Similarly, taking moments about BB:

$$\bar{x} = \frac{(5 \times 30 \times 15)_a + (45 \times 5 \times 2.5)_b}{375} = 7.5mm$$

 2^{nd} Moments of Area and Product Moment of Area about the x-y axes through C

Therefore, using the Parallel Axis Theorem,

$$I_{x'} = (I_x + Ab^2)_a + (I_x + Ab^2)_b$$

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

$$= \left(\frac{30\times5^{3}}{12} + 30\times5\times(47.5 - 32.5)^{2}\right) + \left(\frac{5\times45^{3}}{12} + 5\times45\times(22.5 - 32.5)^{2}\right)$$
$$= 94,531.25mm^{4}$$

and,

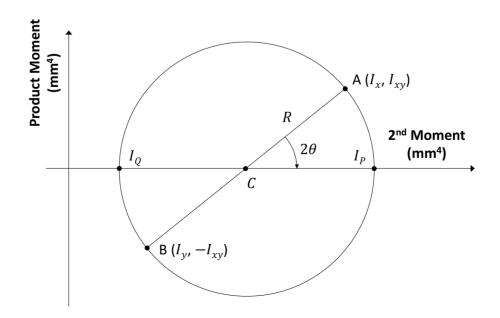
$$I_{y'} = (I_y + Aa^2)_a + (I_y + Aa^2)_b$$
$$= \left(\frac{5 \times 30^3}{12} + 5 \times 30 \times (15 - 7.5)^2\right) + \left(\frac{45 \times 5^3}{12} + 45 \times 5 \times (2.5 - 7.5)^2\right)$$
$$= 25,781.25mm^4$$

Also,

$$I_{x'y'} = (I_{xy} + Aab)_a + (I_{xy} + Aab)_b$$
$$= (0 + 30 \times 5 \times (15 - 7.5) \times (47.5 - 32.5)) + (0 + 45 \times 5 \times (2.5 - 7.5) \times (22.5 - 32.5))$$
$$= 28,125mm^4$$

Principal Second Moments of Area

Mohr's Circle



MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

$$Centre, C = \frac{I_{x'} + I_{y'}}{2} = \frac{94,531.25 + 25,781.25}{2} = 60,156.25mm$$

$$Radius, R = \sqrt{\left(\frac{I_{x'} - I_{y'}}{2}\right)^2 + I_{x'y'}^2} = \sqrt{\left(\frac{94,531.25 - 25,781.25}{2}\right)^2 + 28,125^2} = 44,414.6mm$$

Therefore, the Principal 2nd Moments of Area are:

$$I_P = C + R = 60,156.25 + 44,414.6 = 104,570.85mm^4$$

and,

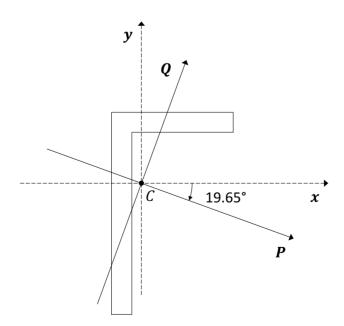
$$I_Q = C - R = 60,156.25 - 44,414.6 = 15,741.65mm^4$$

Directions of the Principal Axes

From the Mohr's circle above:

$$\sin 2\theta = \frac{I_{xy}}{R} = \frac{28,125}{44,414.6}$$
$$\therefore \theta = 19.65^{\circ}$$

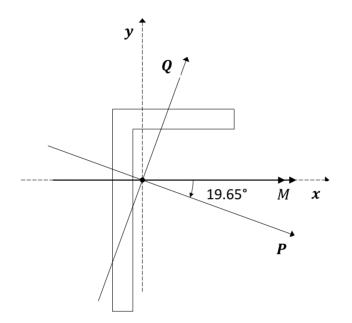
Therefore the Principal Axes are at 19.65° clockwise from the x-y axes, as shown on the diagram below.



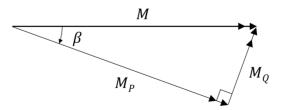
MM2MS3 Mechanics of Solids 3

Exercise Sheet 2 – Asymmetrical Bending Solutions

As this is a 500mm cantilever beam with a vertical load of 1000N applied to the end, it is the equivalent of having a 500,000Nmm ($M = P \times L$) Bending Moment applied about the x-axis as shown below,



Resolve applied Bending Moment onto Principal Axes



Therefore,

$$M_P = M\cos\theta = 500,000\cos 19.65 = 470,882.18Nmm$$

and,

$$M_0 = Msin\theta = 500,000sin19.65 = 168,136.77Nmm$$

Calculation of position of Neutral Axis

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

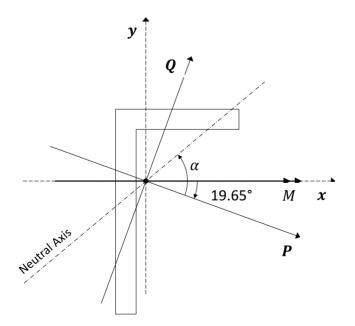
At the Neutral Axis, σ_b = 0, therefore,

$$\frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = 0$$
$$\therefore \frac{M_P Q}{I_P} = \frac{M_Q P}{I_Q}$$
$$\therefore \frac{Q}{P} = \frac{M_Q I_P}{M_P I_Q}$$

Therefore, α , the angle between the Neutral Axis and the Principal Axes can be defined as,

$$\alpha = \tan^{-1}\left(\frac{Q}{P}\right) = \tan^{-1}\left(\frac{M_Q I_P}{M_P I_Q}\right) = \tan^{-1}\left(\frac{168,136.77 \times 104,570.85}{470,882.18 \times 15,741.65}\right) = 67.14^{\circ}$$

Therefore the Neutral Axis is at 67.14° (anti-clockwise) from the Principal Axes as shown below,



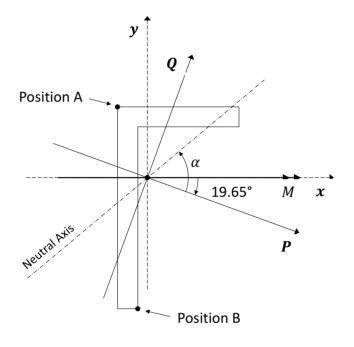
The Neutral Axis is therefore at (19.65° - 67.14° =) -47.49° (anti-clockwise) from the x-axis.

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

(b)

Maximum Tensile and Compressive Stresses in the section

By observation, it is considered that the maximum tensile and compressive stresses in the section will be at positions A and B, respectively, as shown below,



As above,

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

Therefore, the co-ordinates of point A on the *P*-*Q* axes are required. These are calculated as:

$$P = x \cos\theta - y \sin\theta$$

and,

 $Q = xsin\theta + ycos\theta$

Where for point A, x = -7.5mm and y = 17.5mm. Therefore,

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

P = -7.5cos19.65 - 17.5sin19.65 = -12.95mm

and,

Q = -7.5sin19.65 + 17.5cos19.65 = 13.96mm

These P-Q co-ordinates for position A can now be substituted into the equation for bending stress to give:

$$\sigma_{bA} = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = \frac{470,882.18 \times 13.96}{104,570.85} - \frac{168,136.77 \times -12.95}{15,741.65}$$
$$\therefore \sigma_{bA} = 201.18 M P a$$

And for point B, x = -2.5mm and y = -32.5mm. Therefore,

$$P = -2.5\cos 19.65 + 32.5\sin 19.65 = 8.58mm$$

and,

$$Q = -2.5sin19.65 - 32.5cos19.65 = -31.45mm$$

These P-Q co-ordinates for position B can now be substituted into the equation for bending stress to give:

$$\sigma_{bB} = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = \frac{470,882.18 \times -31.45}{104,570.85} - \frac{168,136.77 \times 8.58}{15,741.65} = -141.62 - 91.64$$
$$\therefore \sigma_{bB} = -233.26 MPa$$

5. Calculate (a) the position of the Neutral Axis and (b) the maximum tensile stress for the section shown in Figure Q5 when a Bending Moment of 225Nm is applied about the x-axis in the sense shown.

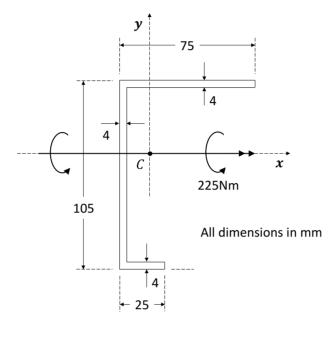


Fig Q5

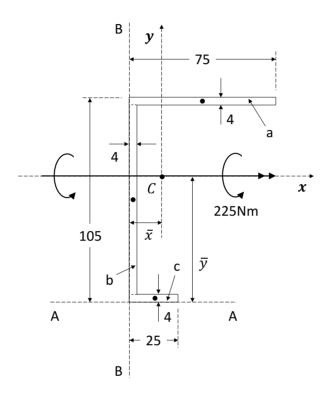
[Ans: a) 42.82° (anti-clockwise) from the x-y axes, b) 14.22MPa]

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Solution 5

(a)

Position of Centroid, C



 $Total Area, A = (75 \times 4)_a + (4 \times 97)_b + (25 \times 4)_c = 788 mm^4$

Taking moments about AA:

$$\overline{y} = \frac{(75 \times 4 \times 103)_a + (4 \times 97 \times 52.5)_b + (25 \times 4 \times 2)_c}{788} = 65.32mm$$

Similarly, taking moments about BB:

$$\bar{x} = \frac{(4 \times 75 \times 37.5)_a + (97 \times 4 \times 2)_b + (4 \times 25 \times 12.5)_c}{788} = 16.85mm$$

2^{nd} Moments of Area and Product Moment of Area about the *x*-*y* axes through *C*

Therefore, using the Parallel Axis Theorem,

$$I_{xr} = (I_x + Ab^2)_a + (I_x + Ab^2)_b + (I_x + Ab^2)_c$$

= $\left(\frac{75 \times 4^3}{12} + 75 \times 4 \times (103 - 65.32)^2\right) + \left(\frac{4 \times 97^3}{12} + 4 \times 97 \times (52.5 - 65.32)^2\right)$
+ $\left(\frac{25 \times 4^3}{12} + 25 \times 4 \times (2 - 65.32)^2\right)$
= 1,195,403.35mm⁴

and,

$$I_{yr} = (I_y + Aa^2)_a + (I_y + Aa^2)_b + (I_y + Aa^2)_c$$

= $\left(\frac{4 \times 75^3}{12} + 4 \times 75 \times (37.5 - 16.85)^2\right) + \left(\frac{97 \times 4^3}{12} + 97 \times 4 \times (2 - 16.85)^2\right)$
+ $\left(\frac{4 \times 25^3}{12} + 4 \times 25 \times (12.5 - 16.85)^2\right)$
= $361,732.39mm^4$

Also,

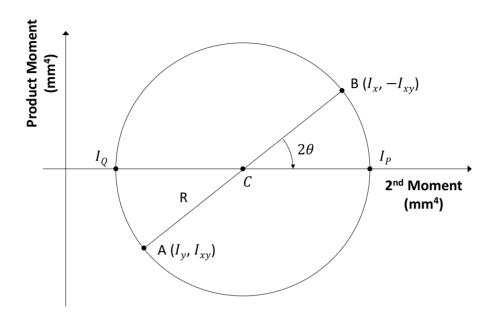
$$I_{x'y'} = (I_{xy} + Aab)_a + (I_{xy} + Aab)_b + (I_{xy} + Aab)_c$$

= $(0 + 75 \times 4 \times (37.5 - 16.85) \times (103 - 65.32)) + (0 + 4 \times 97 \times (2 - 16.85) \times (52.5 - 65.32))$
+ $(0 + 25 \times 4 \times (12.5 - 16.85) \times (2 - 65.32))$
= $334,838.08mm^4$

Principal 2nd Moments of Area

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

Mohr's Circle



$$Centre, C = \frac{I_{x'} + I_{y'}}{2} = \frac{1,195,403.35 + 361,732.39}{2} = 778,567.87mm$$

$$Radius, R = \sqrt{\left(\frac{I_{x'} - I_{y'}}{2}\right)^2 + I_{x'y'}^2} = \sqrt{\left(\frac{1,195,403.35 - 361,732.39}{2}\right)^2 + 334,838.08^2}$$

$$= 534,666.59mm$$

Therefore, the Principal 2nd Moments of Area are:

 $I_P = C + R = 778,567.87 + 534,666.59 = 1,313,234.45mm^4$

and,

$$I_0 = C - R = 778,567.87 - 534,666.59 = 243,901.27mm^4$$

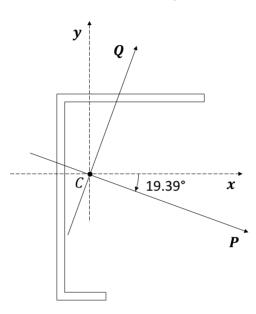
Directions of the Principal Axes

From the Mohr's circle above:

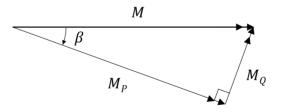
$$\sin 2\theta = \frac{I_{xy}}{R} = \frac{334,838.08}{534,666.59}$$

 $\therefore \theta = 19.39^{\circ}$

Therefore the Principal Axes are at 19.39° clockwise from the x-y axes, as shown on the diagram below.



Resolve applied bending moment onto Principal Axes



Therefore,

$$M_P = M\cos\theta = 225\cos 19.39 = 212.24Nm = 212.24 \times 10^3 Nmm$$

and,

$$M_0 = Msin\theta = 225sin19.39 = 74.7Nm = 74.7 \times 10^3 Nmm$$

Calculation of position of Neutral Axis

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

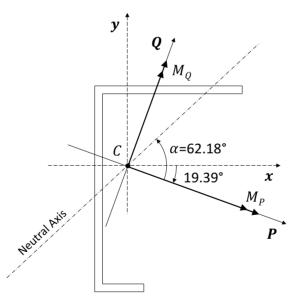
At the Neutral Axis, σ_b = 0, therefore,

$$\frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = 0$$
$$\therefore \frac{M_P Q}{I_P} = \frac{M_Q P}{I_Q}$$
$$\therefore \frac{Q}{P} = \frac{M_Q I_P}{M_P I_Q}$$

Therefore, α , the angle between the Neutral Axis and the Principal Axes can be defined as,

$$\alpha = \tan^{-1}\left(\frac{Q}{P}\right) = \tan^{-1}\left(\frac{M_Q I_P}{M_P I_Q}\right) = \tan^{-1}\left(\frac{74.7 \times 10^3 \times 1,313,234.45}{212.24 \times 10^3 \times 243,901.27}\right) = 62.18^{\circ}$$

Therefore the Neutral Axis is at 62.18° (anti-clockwise) from the Principal Axes as shown below,



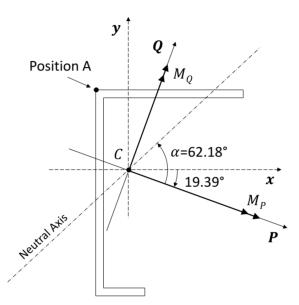
The Neutral Axis is therefore at $(19.82^{\circ} - 62.64^{\circ}) - 42.82^{\circ}$ (anti-clockwise) from the *x*-axis.

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

(b)

Maximum Tensile Stress in the section

By observation, it is considered that the maximum tensile stress will be at position A, as shown below,



As above,

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q}$$

Therefore, the co-ordinates of point A on the *P*-*Q* axes are required. These are calculated as:

$$P = x \cos\theta - y \sin\theta$$

and,

$$Q = xsin\theta + ycos\theta$$

Where for point A, x = -16.85mm and y = 39.68mm. Therefore,

$$P = -16.85\cos 19.39 - 39.68\sin 19.39 = -29.06mm$$

and,

$$Q = -16.85sin19.39 + 39.68cos19.39 = 31.84mm$$

MM2MS3 Mechanics of Solids 3 Exercise Sheet 2 – Asymmetrical Bending Solutions

These P-Q co-ordinates for position A can now be substituted into the equation for bending stress to give:

$$\sigma_b = \frac{M_P Q}{I_P} - \frac{M_Q P}{I_Q} = \frac{212.24 \times 10^3 \times 31.84}{1,313,234.45} - \frac{74.7 \times 10^3 \times -29.06}{243,901.27}$$
$$\therefore \sigma_b = 14.39 MPa$$