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1. For	the	section	shown	in	Figure	Q1,	determine:	
	

(a) The	position	of	the	Centroid,	𝐶	
(b) 2nd	Moments	of	Area	and	Product	Moment	of	Area	about	the	𝑥-𝑦	axes	through	𝐶	
(c) The	Principal	2nd	Moments	of	Area	
(d) The	directions	of	the	Principal	Axes	

	

	

Fig	Q1	

	

[Ans:	 a)	 14.7mm	 from	 bottom	 and	 left	 edges,	 b)	 𝑰𝒙	 =	 131,257.96mm4,	 𝑰𝒚	 =	 131,257.96mm4	 &	 𝑰𝒙𝒚	 =	 -
77,234.04mm4,	c)	𝑰𝒑	=	208,491.1mm4	&	𝑰𝑸	=	54,023.92mm4,	d)	45°	anti-clockwise	from	𝒙-𝒚	axes]	
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Solution	1	

(a) Position	of	Centroid,	𝑪	

	

	

𝑇𝑜𝑡𝑎𝑙	𝐴𝑟𝑒𝑎, 𝐴 = 6×44 8 + 50×6 < = 564𝑚𝑚>	

	

Taking	moments	about	AA:	

𝑦 =
6×44×28 8 + 50×6×3 <

564
= 14.7𝑚𝑚	

	

Similarly,	taking	moments	about	BB:	

𝑥 =
44×6×3 8 + 6×50×25 <

564
= 14.7𝑚𝑚	

	

(b) 2nd	Moments	of	Area	and	Product	Moment	of	Area	about	the	𝒙-𝒚	axes	through	𝑪	

Therefore,	using	the	Parallel	Axis	Theorem,	

𝐼FG = 𝐼F + 𝐴𝑏I 8 + 𝐼F + 𝐴𝑏I <	

	

A

B

A

B

b

a

6

6

50

50



University	of	Nottingham	
Department	of	Mechanical	Engineering	

	
MM2MS3	Mechanics	of	Solids	3	
Exercise	Sheet	2	–	Asymmetrical	Bending	Solutions	
	

=
6×44J

12
+ 6×44× 28 − 14.7 I +

50×6J

12
+ 50×6× 3 − 14.7 I 	

∴ 𝐼FG = 131,257.96𝑚𝑚>	

	

and,	

𝐼NG = 𝐼N + 𝐴𝑎I 8
+ 𝐼N + 𝐴𝑎I <

	

=
44×6J

12
+ 44×6× 3 − 14.7 I +

6×50J

12
+ 6×50× 25 − 14.7 I 	

∴ 𝐼NG = 131,257.96𝑚𝑚>	

	

Also,	

𝐼FGNG = 𝐼FN + 𝐴𝑎𝑏 8
+ 𝐼FN + 𝐴𝑎𝑏 <

	

= 0 + 6×44× 3 − 14.7 × 28 − 14.7 + 0 + 50×6× 25 − 14.7 × 3 − 14.7 	

∴ 𝐼FGNG = −77,234.04𝑚𝑚>	

	

(c) Principal	Second	Moments	of	Area	
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Mohr’s	Circle	

	

	

𝐶𝑒𝑛𝑡𝑟𝑒, 𝐶 =
𝐼FG + 𝐼NG

2
= 131,257.96𝑚𝑚>	

	

𝑅𝑎𝑑𝑖𝑢𝑠, 𝑅 =
𝐼FG − 𝐼NG

2

I

+ 𝐼FGNGI = 77,234.04𝑚𝑚>	

	

Therefore,	the	Principal	2nd	Moments	of	Area	are:	

𝐼U = 𝐶 + 𝑅 = 131,257.96 + 77,234.04 = 208,491.1𝑚𝑚>	

and,	

𝐼U = 𝐶 − 𝑅 = 131,257.96 − 77,234.04 = 54,023.92𝑚𝑚>	

	

(d) Directions	of	the	Principal	Axes	

Also,	

2𝜃 = −90°	
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∴ 𝜃 = −45°	

	

Therefore	the	Principal	Axes	are	at	45°	anti-clockwise	from	the	𝑥-𝑦	axes,	as	shown	on	the	diagram	below.	

	

	

45°
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2. Calculate	(a)	the	Principal	2nd	Moments	of	Area	and	(b)	the	directions	of	the	Principal	Axes	for	the	section	
shown	in	Figure	Q2.	

	

	

Fig	Q2	

	

[Ans:	a)	𝑰𝒑	=	367,810.05mm4	&	𝑰𝑸	=	44,967.75mm4,	b)	6.97°]	
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Solution	2	

(a) 	

Position	of	Centroid,	𝑪	

	

	

𝑇𝑜𝑡𝑎𝑙	𝐴𝑟𝑒𝑎, 𝐴 = 20×10 8 + 10×40 < + 30×10 X = 900𝑚𝑚>	

	

Taking	moments	about	AA:	

𝑦 =
20×10×55 8 + 10×40×30 < + 30×10×5 X

900
= 27.22𝑚𝑚	

	

Similarly,	taking	moments	about	BB:	

𝑥 =
10×20×20 8 + 40×10×25 < + 10×30×15 X

900
= 20.56𝑚𝑚	
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2nd	Moments	of	Area	and	Product	Moment	of	Area	about	the	𝒙-𝒚	axes	through	𝑪	

Therefore,	using	the	Parallel	Axis	Theorem,	

𝐼FG = 𝐼F + 𝐴𝑏I 8 + 𝐼F + 𝐴𝑏I < + 𝐼F + 𝐴𝑏I X 	

=
20×10J

12
+ 20×10× 55 − 27.22 I +

10×40J

12
+ 10×40× 30 − 27.22 I

+
30×10J

12
+ 30×10× 5 − 27.22 I 	

= 363,055.56𝑚𝑚>	

	

and,	

𝐼NG = 𝐼N + 𝐴𝑎I 8
+ 𝐼N + 𝐴𝑎I <

+ 𝐼N + 𝐴𝑎I X
	

=
10×20J

12
+ 10×20× 20 − 20.56 I +

40×10J

12
+ 40×10× 25 − 20.56 I

+
10×30J

12
+ 10×30× 15 − 20.56 I 	

= 49,722.24𝑚𝑚>	

	

Also,	

𝐼FGNG = 𝐼FN + 𝐴𝑎𝑏 8
+ 𝐼FN + 𝐴𝑎𝑏 <

+ 𝐼FN + 𝐴𝑎𝑏 X
	

= 0 + 20×10× 20 − 20.56 × 55 − 27.22 + 0 + 10×40× 25 − 20.56 × 30 − 27.22
+ 0 + 30×10× 15 − 20.56 × 5 − 27.22 	

= 38,888.88𝑚𝑚>	
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Principal	Second	Moments	of	Area	

Mohr’s	Circle	

	

	

𝐶𝑒𝑛𝑡𝑟𝑒, 𝐶 =
𝐼FG + 𝐼NG

2
=
363,055.56 + 49,722.24

2
= 206,388.9𝑚𝑚	

𝑅𝑎𝑑𝑖𝑢𝑠, 𝑅 =
𝐼FY − 𝐼NY

2

I

+ 𝐼FYNYI =
363,055.56 − 49,722.24

2

I

+ 38,888.88I = 161,421.15𝑚𝑚	

	

Therefore,	the	Principal	2nd	Moments	of	Area	are:	

𝐼U = 𝐶 + 𝑅 = 206,388.9 + 161,421.15 = 367,810.05𝑚𝑚>	

and,	

𝐼Z = 𝐶 − 𝑅 = 206,388.9 − 161,421.15 = 44,967.75𝑚𝑚>	
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(b) 	

Directions	of	the	Principal	Axes	

From	the	Mohr’s	Circle	above:	

𝑠𝑖𝑛2𝜃 =
𝐼FN
𝑅
=

38,888.88
161,421.15

	

∴ 𝜃 = 6.97°	

	

Therefore	the	Principal	Axes	are	at	6.97°	(clockwise)	from	the	𝑥-𝑦	axes,	as	shown	on	the	diagram	below.	

	

	

6.97°
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3. A	box	section	beam,	300mm	wide,	450mm	deep,	with	a	uniform	wall	thickness	of	25mm	is	subjected	to	a	
uniform	bending	moment,	𝑀.	The	plane	of	bending	is	inclined	at	an	angle	of	30°	to	the	longer	principal	axis	
of	the	section.	Determine	the	maximum	permissible	bending	moment	if	the	maximum	stress	in	the	beam	is	
not	to	exceed	120MPa.	

	

[Ans:	334.54kNm]	

	

Solution	3	

Principal	2nd	Moments	of	Area	

	

	

Due	to	2	planes	of	symmetry	in	the	section,	it	can	be	seen	that	the	Principal	(𝑃-𝑄)	Axes	lie	on	the	𝑥-𝑦	axes,	

i.e.,		

𝜃 = 0°	

where	𝜃	is	the	angle	between	the	x-y	axes	and	the	Principal	(𝑃-𝑄)	Axes.	Also,	

𝐼U = 𝐼F =
𝑏^𝑑^

J

12
−
𝑏_𝑑_

J

12 F
=
300×450J

12
−
250×400J

12
= 944,791,666.67𝑚𝑚>	

25

25

300

450

All	dimensions	in	mm
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25
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and,	

	

𝐼Z = 𝐼N =
𝑏^𝑑^

J

12
−
𝑏_𝑑_

J

12 N
=
450×300J

12
−
400×250J

12
= 491,666,666.67𝑚𝑚>	

	

Bending	Moment	is	applied	at	30°	to	the	longer	Principal	Axis	(i.e.	the	𝑄-axis)	as	shown	below,	

	

	

Resolve	applied	Bending	Moment	onto	Principal	Axes	

	

	

Therefore,	
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𝑀U = 𝑀𝑐𝑜𝑠𝛽 = 𝑀𝑐𝑜𝑠30	

and,	

𝑀Z = −𝑀𝑠𝑖𝑛𝛽 = −𝑀𝑠𝑖𝑛30	

(note	negative	sign	as	𝑀Z	is	in	the	negative	𝑦	direction)	

	

Calculation	of	position	of	Neutral	Axis	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

	

At	the	Neutral	Axis,	𝜎<	=	0,	therefore,	

𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

= 0	

∴
𝑀U𝑄
𝐼U

=
𝑀Z𝑃
𝐼Z

	

∴
𝑄
𝑃
=
𝑀Z𝐼U
𝑀U𝐼Z

	

	

Therefore,	𝛼,	the	angle	between	the	Neutral	Axis	and	the	Principal	Axes	can	be	defined	as,	

𝛼 = tangh
𝑄
𝑃

= tangh
𝑀Z𝐼U
𝑀U𝐼Z

= tangh
−𝑀𝑠𝑖𝑛30×944,791,666.67
𝑀𝑐𝑜𝑠30×491,666,666.67

= −47.97°	

	

Therefore	the	Neutral	Axis	is	at	47.97°	(clockwise)	from	the	Principal	Axes	as	shown	below,	
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Maximum	Tensile	Stress	in	the	section	

It	can	be	seen	that	the	maximum	(tensile)	Bending	Stress	will	be	at	position	A,	as	shown	below,	

	

	

As	above,	
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𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

	

Therefore,	the	co-ordinates	of	point	A	on	the	𝑃-𝑄	axes	are	required.	In	this	case,	these	are	the	same	as	the	𝑥-𝑦	
co-ordinates	and	are:	

𝑃 = 150𝑚𝑚	

and,		

𝑄 = 225𝑚𝑚	

	

These	𝑃-𝑄	co-ordinates	for	position	A	can	now	be	substituted	into	the	equation	for	bending	stress	to	give:	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

=
𝑀𝑐𝑜𝑠30×225
944,791,666.67

−
−𝑀𝑠𝑖𝑛30×150
491,666,666.67

	

∴ 𝜎< = 𝑀 2.062×10gi + 1.525×10gi = 3.587×10gi×𝑀	

	

As	the	maximum	stress	in	the	beam	is	not	to	exceed	120MPa:	

120 = 3.587×10gi×𝑀	

∴ 𝑀 = 33.454𝑁𝑚𝑚 = 334.54𝑘𝑁𝑚	
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4. A	50mm	by	30mm	by	5mm	angle	 is	used	as	a	cantilever	of	 length	500mm,	with	the	30mm	leg	horizontal	
and	 uppermost.	 A	 vertical	 load	 of	 1000N	 is	 applied	 at	 the	 free	 end.	 Determine	 (a)	 the	 position	 of	 the	
neutral	axis	and	(b)	the	maximum	tensile	and	compressive	bending	stresses.	

	

[Ans:	a)	86.79°,	b)	201.18MPa	&	-94.38MPa]	

	

Solution	4	
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(a) 	

Position	of	Centroid,	𝑪	

	

	

𝑇𝑜𝑡𝑎𝑙	𝐴𝑟𝑒𝑎, 𝐴 = 30×5 8 + 5×45 < = 375𝑚𝑚>	

	

Taking	moments	about	AA:	

𝑦 =
30×5×47.5 8 + 5×45×22.5 <

375
= 32.5𝑚𝑚	

	

Similarly,	taking	moments	about	BB:	

𝑥 =
5×30×15 8 + 45×5×2.5 <

375
= 7.5𝑚𝑚	

	

2nd	Moments	of	Area	and	Product	Moment	of	Area	about	the	x-y	axes	through	𝑪	

Therefore,	using	the	Parallel	Axis	Theorem,	

𝐼FG = 𝐼F + 𝐴𝑏I 8 + 𝐼F + 𝐴𝑏I <	

!
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=
30×5J

12
+ 30×5× 47.5 − 32.5 I +

5×45J

12
+ 5×45× 22.5 − 32.5 I 	

= 94,531.25𝑚𝑚>	

and,	

𝐼NG = 𝐼N + 𝐴𝑎I 8
+ 𝐼N + 𝐴𝑎I <

	

=
5×30J

12
+ 5×30× 15 − 7.5 I +

45×5J

12
+ 45×5× 2.5 − 7.5 I 	

= 25,781.25𝑚𝑚>	

	

Also,	

𝐼FGNG = 𝐼FN + 𝐴𝑎𝑏 8
+ 𝐼FN + 𝐴𝑎𝑏 <

	

= 0 + 30×5× 15 − 7.5 × 47.5 − 32.5 + 0 + 45×5× 2.5 − 7.5 × 22.5 − 32.5 	

= 28,125𝑚𝑚>	

	

Principal	Second	Moments	of	Area	

Mohr’s	Circle	
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𝐶𝑒𝑛𝑡𝑟𝑒, 𝐶 =
𝐼FG + 𝐼NG

2
=
94,531.25 + 25,781.25

2
= 60,156.25𝑚𝑚	

𝑅𝑎𝑑𝑖𝑢𝑠, 𝑅 =
𝐼FY − 𝐼NY

2

I

+ 𝐼FYNYI =
94,531.25 − 25,781.25

2

I

+ 28,125I = 44,414.6𝑚𝑚	

	

Therefore,	the	Principal	2nd	Moments	of	Area	are:	

𝐼U = 𝐶 + 𝑅 = 60,156.25 + 44,414.6 = 104,570.85𝑚𝑚>	

and,	

𝐼Z = 𝐶 − 𝑅 = 60,156.25 − 44,414.6 = 15,741.65𝑚𝑚>	

	

Directions	of	the	Principal	Axes	

From	the	Mohr’s	circle	above:	

𝑠𝑖𝑛2𝜃 =
𝐼FN
𝑅
=

28,125
44,414.6

	

∴ 𝜃 = 19.65°	

	

Therefore	the	Principal	Axes	are	at	19.65°	clockwise	from	the	x-y	axes,	as	shown	on	the	diagram	below.	

	

	

19.65°
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As	this	is	a	500mm	cantilever	beam	with	a	vertical	load	of	1000N	applied	to	the	end,	it	is	the	equivalent	of	
having	a	500,000Nmm	(𝑀 = 𝑃×𝐿)	Bending	Moment	applied	about	the	x-axis	as	shown	below,	

	

	

	

	

	

Resolve	applied	Bending	Moment	onto	Principal	Axes	

	

	

Therefore,	

𝑀U = 𝑀𝑐𝑜𝑠𝜃 = 500,000𝑐𝑜𝑠19.65 = 470,882.18𝑁𝑚𝑚	

and,	

𝑀Z = 𝑀𝑠𝑖𝑛𝜃 = 500,000𝑠𝑖𝑛19.65 = 168,136.77𝑁𝑚𝑚	

	

Calculation	of	position	of	Neutral	Axis	

19.65°
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𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

	

At	the	Neutral	Axis,	𝜎<	=	0,	therefore,	

	

𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

= 0	

∴
𝑀U𝑄
𝐼U

=
𝑀Z𝑃
𝐼Z

	

∴
𝑄
𝑃
=
𝑀Z𝐼U
𝑀U𝐼Z

	

	

Therefore,	𝛼,	the	angle	between	the	Neutral	Axis	and	the	Principal	Axes	can	be	defined	as,	

𝛼 = tangh
𝑄
𝑃

= tangh
𝑀Z𝐼U
𝑀U𝐼Z

= tangh
168,136.77×104,570.85
470,882.18×15,741.65

= 67.14°	

	

Therefore	the	Neutral	Axis	is	at	67.14°	(anti-clockwise)	from	the	Principal	Axes	as	shown	below,	

	

	

The	Neutral	Axis	is	therefore	at	(19.65°	-	67.14°	=)	-47.49°	(anti-clockwise)	from	the	x-axis.	

19.65°
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(b)	

Maximum	Tensile	and	Compressive	Stresses	in	the	section	

	

	

By	observation,	it	is	considered	that	the	maximum	tensile	and	compressive	stresses	in	the	section	will	be	at	
positions	A	and	B,	respectively,	as	shown	below,	

	

	

As	above,	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

	

Therefore,	the	co-ordinates	of	point	A	on	the	𝑃-𝑄	axes	are	required.	These	are	calculated	as:	

𝑃 = 𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃	

and,		

𝑄 = 𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃	

	

Where	for	point	A,	𝑥	=	-7.5mm	and	𝑦	=	17.5mm.	Therefore,	

19.65°

Position	A

Position	B
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𝑃 = −7.5𝑐𝑜𝑠19.65 − 17.5𝑠𝑖𝑛19.65 = −12.95𝑚𝑚	

and,		

𝑄 = −7.5𝑠𝑖𝑛19.65 + 17.5𝑐𝑜𝑠19.65 = 13.96𝑚𝑚	

	

	

These	𝑃-𝑄	co-ordinates	for	position	A	can	now	be	substituted	into	the	equation	for	bending	stress	to	give:	

𝜎<m =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

=
470,882.18×13.96

104,570.85
−
168,136.77×−12.95

15,741.65
	

∴ 𝜎<m = 201.18𝑀𝑃𝑎	

	

And	for	point	B,	𝑥	=	-2.5mm	and	𝑦	=	-32.5mm.	Therefore,	

𝑃 = −2.5𝑐𝑜𝑠19.65 + 32.5𝑠𝑖𝑛19.65 = 8.58𝑚𝑚	

and,		

𝑄 = −2.5𝑠𝑖𝑛19.65 − 32.5𝑐𝑜𝑠19.65 = −31.45𝑚𝑚	

	

These	𝑃-𝑄	co-ordinates	for	position	B	can	now	be	substituted	into	the	equation	for	bending	stress	to	give:	

𝜎<n =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

=
470,882.18×−31.45

104,570.85
−
168,136.77×8.58

15,741.65
= −141.62 − 91.64	

∴ 𝜎<n = −233.26𝑀𝑃𝑎	
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5. Calculate	(a)	the	position	of	the	Neutral	Axis	and	(b)	the	maximum	tensile	stress	for	the	section	shown	in	
Figure	Q5	when	a	Bending	Moment	of	225Nm	is	applied	about	the	x-axis	in	the	sense	shown.	

	

Fig	Q5	

	

	[Ans:	a)	42.82°	(anti-clockwise)	from	the	x-y	axes,	b)	14.22MPa]	

	

	

	

	

	

	

	

	

	

	

	

	

4

4

4

75

25

105

225Nm

All	dimensions	in	mm
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Solution	5	

(a)	

Position	of	Centroid,	𝑪	

	

	

𝑇𝑜𝑡𝑎𝑙	𝐴𝑟𝑒𝑎, 𝐴 = 75×4 8 + 4×97 < + 25×4 X = 788𝑚𝑚>	

	

Taking	moments	about	AA:	

𝑦 =
75×4×103 8 + 4×97×52.5 < + 25×4×2 X

788
= 65.32𝑚𝑚	

	

Similarly,	taking	moments	about	BB:	

𝑥 =
4×75×37.5 8 + 97×4×2 < + 4×25×12.5 X

788
= 16.85𝑚𝑚	

	

	

c
b

a

4

4

4

75

25

105

225Nm

A

B

A

B
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2nd	Moments	of	Area	and	Product	Moment	of	Area	about	the	𝒙-𝒚	axes	through	𝑪	

Therefore,	using	the	Parallel	Axis	Theorem,	

𝐼FG = 𝐼F + 𝐴𝑏I 8 + 𝐼F + 𝐴𝑏I < + 𝐼F + 𝐴𝑏I X 	

=
75×4J

12
+ 75×4× 103 − 65.32 I +

4×97J

12
+ 4×97× 52.5 − 65.32 I 	

+
25×4J

12
+ 25×4× 2 − 65.32 I 	

= 1,195,403.35𝑚𝑚>	

and,	

𝐼NG = 𝐼N + 𝐴𝑎I 8
+ 𝐼N + 𝐴𝑎I <

+ 𝐼N + 𝐴𝑎I X
	

=
4×75J

12
+ 4×75× 37.5 − 16.85 I +

97×4J

12
+ 97×4× 2 − 16.85 I 	

+
4×25J

12
+ 4×25× 12.5 − 16.85 I 	

= 361,732.39𝑚𝑚>	

	

Also,	

𝐼FGNG = 𝐼FN + 𝐴𝑎𝑏 8
+ 𝐼FN + 𝐴𝑎𝑏 <

+ 𝐼FN + 𝐴𝑎𝑏 X
	

= 0 + 75×4× 37.5 − 16.85 × 103 − 65.32 + 0 + 4×97× 2 − 16.85 × 52.5 − 65.32 	

+ 0 + 25×4× 12.5 − 16.85 × 2 − 65.32 	

= 334,838.08𝑚𝑚>	

	

Principal	2nd	Moments	of	Area	

	

	

	

	



University	of	Nottingham	
Department	of	Mechanical	Engineering	

	
MM2MS3	Mechanics	of	Solids	3	
Exercise	Sheet	2	–	Asymmetrical	Bending	Solutions	
	

Mohr’s	Circle	

	

	

𝐶𝑒𝑛𝑡𝑟𝑒, 𝐶 =
𝐼FG + 𝐼NG

2
=
1,195,403.35 + 361,732.39

2
= 778,567.87𝑚𝑚	

𝑅𝑎𝑑𝑖𝑢𝑠, 𝑅 =
𝐼FY − 𝐼NY

2

I

+ 𝐼FYNYI =
1,195,403.35 − 361,732.39

2

I

+ 334,838.08I	

= 534,666.59𝑚𝑚	

	

Therefore,	the	Principal	2nd	Moments	of	Area	are:	

𝐼U = 𝐶 + 𝑅 = 778,567.87 + 534,666.59 = 1,313,234.45𝑚𝑚>	

and,	

𝐼Z = 𝐶 − 𝑅 = 778,567.87 − 534,666.59 = 243,901.27𝑚𝑚>	

	

Directions	of	the	Principal	Axes	

From	the	Mohr’s	circle	above:	

𝑠𝑖𝑛2𝜃 =
𝐼FN
𝑅
=
334,838.08
534,666.59

	

B ( ,	 )
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∴ 𝜃 = 19.39°	

	

Therefore	the	Principal	Axes	are	at	19.39°	clockwise	from	the	𝑥-𝑦	axes,	as	shown	on	the	diagram	below.	

	

	

Resolve	applied	bending	moment	onto	Principal	Axes	

	

	

Therefore,	

𝑀U = 𝑀𝑐𝑜𝑠𝜃 = 225𝑐𝑜𝑠19.39 = 212.24𝑁𝑚 = 212.24×10J𝑁𝑚𝑚	

and,	

𝑀Z = 𝑀𝑠𝑖𝑛𝜃 = 225𝑠𝑖𝑛19.39 = 74.7𝑁𝑚 = 74.7×10J𝑁𝑚𝑚	

	

Calculation	of	position	of	Neutral	Axis	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

19.39°
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At	the	Neutral	Axis,	𝜎<	=	0,	therefore,	

𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

= 0	

∴
𝑀U𝑄
𝐼U

=
𝑀Z𝑃
𝐼Z

	

∴
𝑄
𝑃
=
𝑀Z𝐼U
𝑀U𝐼Z

	

	

Therefore,	𝛼,	the	angle	between	the	Neutral	Axis	and	the	Principal	Axes	can	be	defined	as,	

𝛼 = tangh
𝑄
𝑃

= tangh
𝑀Z𝐼U
𝑀U𝐼Z

= tangh
74.7×10J×1,313,234.45
212.24×10J×243,901.27

= 62.18°	

	

Therefore	the	Neutral	Axis	is	at	62.18°	(anti-clockwise)	from	the	Principal	Axes	as	shown	below,	

	

	

The	Neutral	Axis	is	therefore	at	(19.82°	−	62.64°)	-42.82°	(anti-clockwise)	from	the	𝑥-axis.	

	

	

	

	

19.39°

=62.18°
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(b)	

Maximum	Tensile	Stress	in	the	section	

By	observation,	it	is	considered	that	the	maximum	tensile	stress	will	be	at	position	A,	as	shown	below,	

	

	

As	above,	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

	

	

Therefore,	the	co-ordinates	of	point	A	on	the	𝑃-𝑄	axes	are	required.	These	are	calculated	as:	

𝑃 = 𝑥𝑐𝑜𝑠𝜃 − 𝑦𝑠𝑖𝑛𝜃	

and,		

𝑄 = 𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃	

	

Where	for	point	A,	𝑥	=	-16.85mm	and	𝑦	=	39.68mm.	Therefore,	

𝑃 = −16.85𝑐𝑜𝑠19.39 − 39.68𝑠𝑖𝑛19.39 = −29.06𝑚𝑚	

and,		

𝑄 = −16.85𝑠𝑖𝑛19.39 + 39.68𝑐𝑜𝑠19.39 = 31.84𝑚𝑚	

	

19.39°

Position	A

=62.18°
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These	𝑃-𝑄	co-ordinates	for	position	A	can	now	be	substituted	into	the	equation	for	bending	stress	to	give:	

𝜎< =
𝑀U𝑄
𝐼U

−
𝑀Z𝑃
𝐼Z

=
212.24×10J×31.84

1,313,234.45
−
74.7×10J×−29.06

243,901.27
	

∴ 𝜎< = 14.39𝑀𝑃𝑎	

	


